钙钛矿电池距离商业化还有多远
责任编辑:cnlng    浏览:449次    时间: 2022-09-20 09:53:47      

免职声明:本网站为公益性网站,部分信息来自网络,如果涉及贵网站的知识产权,请及时反馈,我们承诺第一时间删除!

This website is a public welfare website, part of the information from the Internet, if it involves the intellectual property rights of your website, please timely feedback, we promise to delete the first time.

电话Tel: 19550540085: QQ号: 929496072 or 邮箱Email: Lng@vip.qq.com

摘要:钙钛矿电池,自“出生”就“天赋异禀”,得到了广泛的关注。其不仅可以做得更加轻薄,还具有低成本和易制备的优点以及弱光效率高的优势。光伏电池是一种通过光电效应将太阳能转化成电能的装置,具有广阔的发展和应用前景。钙钛矿太阳能电池(以下简称钙钛矿电池)作..

分享到:

钙钛矿电池,自“出生”就“天赋异禀”,得到了广泛的关注。其不仅可以做得更加轻薄,还具有低成本和易制备的优点以及弱光效率高的优势。

光伏电池是一种通过光电效应将太阳能转化成电能的装置,具有广阔的发展和应用前景。钙钛矿太阳能电池(以下简称钙钛矿电池)作为一种新型的光伏电池,也在近年逐渐崭露头角。近日,科技部等九部门联合印发《科技支撑碳达峰碳中和实施方案(2022—2030年)》,也对钙钛矿电池这一新型电池有所提及。

那么,什么是钙钛矿电池?其相比传统太阳能电池有哪些不同之处?未来将有哪些应用场景?科技日报记者就此采访了多位深耕于钙钛矿电池领域的专家。

结构形似“三明治”的新型光伏电池

钙钛矿电池由染料敏化电池演化而来,指采用钙钛矿材料作为吸光层材料的电池。

作为新一代太阳能电池,钙钛矿电池工作原理与传统太阳能电池并无不同。它的结构形似“三明治”,典型结构有5层。两个电极就像三明治的两片面包分别位于最外层,由外向内挨着电极的是空穴传输层和电子传输层,而钙钛矿层则居于最中间。

当太阳光照在钙钛矿电池上,太阳光光子能量大于带隙时,钙钛矿层吸收光子产生“电子—空穴对”。电子传输层将分离出来的电子传输到负极上;空穴传输层则将与电子分离的空穴传输到正极上,进一步在外电路形成电荷定向移动,从而产生电流,实现光能向电能的转换。

北京理工大学材料学院教授陈棋这样形容钙钛矿电池的工作原理:“如果说太阳能电池本身是一间教室的话,男同学和女同学则是电子和空穴。当光照到太阳能电池,就好像下课铃响起了一样。这时,男同学就会排队从后门出来,女同学就排队从前门出来,从而形成电荷定向运动。”

钙钛矿电池有三大突出优势

钙钛矿电池因材料特殊,自“出生”就“天赋异禀”,得到了广泛的关注。

2016年《“十三五”国家战略性新兴产业发展规划》中就提及,要“加强钙钛矿、染料敏化、有机等新型高效低成本太阳能电池技术研发”。

重庆大学物理学院教授、博士生导师邓业浩表示,相比市场上常见的晶硅太阳能电池,钙钛矿电池有三大突出优势。

首先,钙钛矿材料本身的吸光能力强。在太阳光的主要波长下,钙钛矿材料的吸光能力可达晶硅的10倍以上。因此,在太阳能转换效率相当的情况下,钙钛矿电池可以做得更薄。“这将极大地拓展产品形式,丰富应用场景。”邓业浩说。

其次,钙钛矿电池具有低成本和易制备的优点。邓业浩说:“钙钛矿材料是一种合成材料,其原料本身没有稀有金属,并且可以通过溶液制备。因而钙钛矿材料的制造成本较低,制备容易。”

最后,钙钛矿材料还具有弱光效率高的优势。在阴天弱光的条件下,钙钛矿材料不仅可以吸收短波光,还可以将能量转化效率保持在相对稳定的状态。钙钛矿材料的这一特点使得钙钛矿电池作为一种薄膜型光伏电池,不仅可以做成单层电池,理论上还可以叠加在各种电池材料表面,形成叠层电池,从而有效提高太阳光的利用效率。

邓业浩表示,从目前实验室测得的结果来看,经过几十年发展的晶硅太阳能电池的最高转化效率为26.7%,而目前钙钛矿电池的转化效率就已经可以达到25.7%,钙钛矿电池未来可期。

走出实验室还需补齐两个短板

尽管在理论上、实验室中钙钛矿电池有相当大的优势,可是从产业化角度来看,钙钛矿电池仍处于萌芽状态。这是由于其本身存在两个短板,即稳定性较差和大面积应用时的效率损失。

首先,是稳定性较差这一问题。

陈棋表示,尽管在实验室中,钙钛矿电池可以实现较高的光电转换效率。但其在实际应用中,仍受到诸多条件的制约。

北京曜能科技有限公司董事长孙于超表示,业内正在从多方面努力,以解决钙钛矿电池面临的问题。以稳定性问题为例,解决该问题最直接的一种手段,就是针对钙钛矿材料本身的改性。即通过结构设计、元素替换、添加掺杂等手段,让材料本身变得稳定,提高材料的本征稳定性。另一种可行的手段,是通过工艺和工程手段隔绝外界的不稳定因素,即隔绝水、热等环境因素,从而减少乃至避免外界不稳定因素对于材料和器件的影响。

对此,中国科学院电工研究所太阳电池技术研究部主任王文静表示,从外围手段隔绝不稳定因素,尚需经过大量的室外验证。据了解,目前已报道的钙钛矿电池其最长工作寿命往往只能达到几千小时,远低于晶硅电池。

除了稳定性问题外,大面积应用时的效率损失问题是钙钛矿电池的另一短板。

“在效率上,其实钙钛矿电池完全可以进行商业化应用。但是如何从实验室的小面积,扩展到实际应用场景中的大面积,是其商业化需要面临的一个严峻挑战。”王文静坦言,目前实验室里制造的钙钛矿电池只有指甲盖大小,与市场需要的太阳能电池在尺寸上相距甚远。

钙钛矿材料本身的结晶时间短,生产中的工艺窗口时间只有几秒,造成了生产上的困难。除此以外,在制备钙钛矿电池的过程中,一个坏点、一个灰尘都有可能影响整个电池面板的效率,影响了其大面积应用时的效率。

“目前来看,钙钛矿电池制备技术需要解决如何让钙钛矿的薄膜更加致密平整,以及如何保证环境清洁,避免灰尘等因素干扰提升良品率两个问题。设计更为先进的制备技术,能有效保证钙钛矿电池在大面积应用时的效率。”王文静说。

我国钙钛矿光伏技术未来可期

尽管钙钛矿电池有诸多不确定性,但学界不少专家仍对其未来持乐观态度。

陈棋表示,目前我国在钙钛矿电池的学术研究和产业研究上,具有两个最大的优势:一是研究群体大,国内研究钙钛矿电池的企业、机构远比国外多;二是国内有非常巨大的产业基础,光伏市场和光伏制造业在中国呈现蓬勃之势。

“我国钙钛矿光伏技术的未来,可谓前途无量。”陈棋说。

在钙钛矿电池的未来应用方面,孙于超表示,钙钛矿技术最有价值的应用场景是在大规模光伏发电领域。钙钛矿在与晶硅结合组成叠层电池后,可以大幅提高现有光伏组件的发电效率,从而进一步降低发电成本,加快对于传统化石能源的替代,助力我国“双碳”目标实现。此外,钙钛矿电池的厚度仅为晶硅电池的千分之一,柔性轻便的特质使其具有丰富的应用场景,例如用于穿戴式发电装置、光伏玻璃建筑一体化、野外临时发电设备等,甚至可以运用于太空发电。

奋战在钙钛矿电池领域多年,孙于超和科研团队见证了钙钛矿电池从不为人知,到渐渐走入大众视野。在得知《科技支撑碳达峰碳中和实施方案(2022—2030年)》中提及“要研发高效稳定的钙钛矿电池”后,孙于超兴奋地表示:“钙钛矿电池的好时候到了!”


】【打印繁体】【投稿】 【收藏】 【推荐】 【举报】 【评论】 【关闭】【返回顶部