气体流动
责任编辑:icynet    浏览:2396次    时间: 2014-08-17 00:08:17      

免职声明:本网站为公益性网站,部分信息来自网络,如果涉及贵网站的知识产权,请及时反馈,我们承诺第一时间删除!

This website is a public welfare website, part of the information from the Internet, if it involves the intellectual property rights of your website, please timely feedback, we promise to delete the first time.

电话Tel: 19550540085: QQ号: 929496072 or 邮箱Email: Lng@vip.qq.com

摘要: 当真空管道两端存在有压力差时,气体就会自动地从高压处向低压处扩散,便形成了气体流动。任何真空系统都是由气源(待抽容器)、系统构件(管道阀门等)及抽气装置(真空泵)组成的,气体从气源经过系统的构件向抽气口源源不断地流动,是动态真空系统的普遍特点。 真空..

关键词:气体 流动
分享到:

   当真空管道两端存在有压力差时,气体就会自动地从高压处向低压处扩散,便形成了气体流动。任何真空系统都是由气源(待抽容器)、系统构件(管道阀门等)及抽气装置(真空泵)组成的,气体从气源经过系统的构件向抽气口源源不断地流动,是动态真空系统的普遍特点。
   真空技术中,气体沿管道的流动状态可划分为如下几种基本形式:从大气压力下开始抽真空的初期,管道中气体压力和流速较高,气体的惯性力在流动中起主要作用,流动呈不稳定状态,流线无规则,并不时有旋涡出现,这种流动状态称为湍流(涡流,紊流);随着流速和气压的降低,在低真空区域内,气流由湍流变成规则的层流流动,各部分具有不同速度的流动层,流线平行于管轴,气体的粘滞力在流动中起主导作用,此时气体分子的平均自由程λ仍远小于导管最小截面尺寸d,这种流态叫做粘滞流;当气体流动进入高真空范围,分子平均自由程λ远远大于管道最小尺寸d时,气体分子与管壁之间的碰撞占居主要地位,分子靠热运动自由地直线进行,只发生与管壁的碰撞和热反射而飞过管道,气体流动由各个分子的独立运动叠加而成,这种流动称作分子流;发生在中真空区域内,介于粘滞与分子流之间的流动状态叫做中间流或过渡流。
   在不同的流动状态下,管道中的气体流量和导气能力计算方法不同,因此在气体流动计算时,首先要进行流态判别。由于在真空抽气过程中湍流的出现时间较短,常常不加以单独考虑,而是将其归入粘滞流态。其它流动状态的判别可用克努曾数λ/
d 或管道中平均压力p与几何尺寸d的乘积pd作为判据:

   粘滞流            λ/d<1/100            pd>1Pa·m
   中间流           1/100<λ/d<1/3      0.03Pa·m<
pd<1Pa·m   (27)
   分子流           λ/
d<1/3            pd<0.03Pa·m

   为了考察管道中流过的气体数量的多少,可以使用气体的质量流率qm(kg/s)和摩尔流率qv(mol/s),即单位时间内通过管道某一截面的气体质量和气体摩尔数。不过这两种流率不便实际测量,因此工程中广泛使用的是单位时间内流过管道指定截面的气体体积,即体积流率qv(m3/s)。在气体压力为p的截面上,qv与qm、qγ的关系为
           qm= pM/RT·qv 和 qv = p/RT·qv(28)
   在真空泵入口处的气体体积流率又称为泵的抽气速率(简称抽速),是真空泵的重要性能指标之一。由于在不同压力下,相同的体积流率对应有不同的质量流率,所以在计算体积流率量值时,必须指明所对应的气体压力。
   为了更方便地计算流过气体的多少,工程中还定义气体的压力与其体积的乘积为气体量G(Pa·m3=J),即G=pV;单位时间内流过指定横截面的气体量为流量qG=dG/dt(Pa·m3/s=J/s);在任一指定截面上,气体流量、压力和抽速间的关系为
           qG =p·qv         (29)
   在稳定流动状态下,即管道各截面处的气体压力不随时间变化时,根据质量守恒原理,真空系统任一截面上的气体质量流率qm相等,若整个系统中各处温度相同,则化为流量连续方程,即各截面上的气体流量相等。
           qG = p1qv1=p2qv2 =piqvi        (30)
   如果气体流动过程中温度有变化,例如流过冷却器后温度由
T1降至T2,则对应的流量qG1T1=qG2T2
   
实验说明,气体流过一段真空管道的流量qG与管道两端的压力差p1-p2成正比,即有
           qG=C·(p1-p2)        (31)
式中的比例系数C具有体积流率的量纲(m3/s),它所反映的是管道允许流过气体能力的大小,定义为该段管道的流导。
   流导是各种真空系统元件(管道、阀们、冷阱、孔口等)的主要技术指标之一,直接反映该元件对气体流动的阻碍程度,是真空系统计算中需要首先计算的参数。元件的流导与所流过气体的流动状态有关,气体流动为粘滞流时,流导值与元件的几何结构尺寸及流过气体的平均压力有关;为分子流时,流导仅与几何结构尺寸有关。
   根据组成真空系统的需要,有时将几个真空元件(如管道)的入口和出口分别联接在一起,称为元件的并联,并联后元件的总流导等于各分支流导之和
               C=C1+C2+…+Cn    (32)
有时将几个元件首尾顺序联接,称为元件的串联,串联后元件的总流导的倒数等于各元件流导的倒数之和
               1/C= 1/C1+1/C2+…+1/Cn    (33)
   把一个被抽容器的出口和一台真空泵的入口,用总流导为C的真空管路联接起来,若真空泵在其入口处的抽速为S,则该真空系统在被抽容器出口处所能产生的有效抽速为S,则该真空系统在被抽容器出口处所能产生的有效抽速Se为
               Se= (S·C)/(S+C)    (34)
   此式习惯上称为真空技术基本方程。从中可以看出,在被抽容器出口产生的有效抽速Se,比泵口抽速S和管路流导C都要小;若要获得较大的Se,应该合理地搭配S和C,单独增大其中的一个,不能获得理想的结果。


】【打印繁体】【投稿】 【收藏】 【推荐】 【举报】 【评论】 【关闭】【返回顶部